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We analyse modulational (large-scale) perturbations of stationary solutions of the
two-dimensional incompressible Navier–Stokes equations. The stationary solutions
are cellular flows with stream function φ = sin y1 sin y2 + δ cos y1 cos y2, 0 6 δ 6
1. Using multiscale techniques we derive effective coefficients, including the eddy
viscosity tensor, for the (averaged) modulation equations. For cellular flows with
closed streamlines we give rigorous asymptotic bounds at high Reynolds number for
the tensor of eddy viscosity by means of saddle-point variational principles. These
results allow us to compare the linear and nonlinear modulational stability of cellular
flows with no channels and of shear flows at high Reynolds number. We find that the
geometry of the underlying cellular flows plays an important role in the stability of the
modulational perturbations. The predictions of the multiscale analysis are compared
with direct numerical simulations.

1. Introduction and formulation
One of the basic questions in the study of effective equations for fluids at high

Reynolds number concerns the structure of the Reynolds stress tensor, which is
responsible for the interaction between small-scale eddies and large-scale flows (see
Mohammadi & Pironneau 1994). Our goal in this paper is to derive homogenized
or large-scale equations in which the Reynolds stress tensor comes from multiscale
analysis, and to analyse how the small-scale eddies determine the effective coefficients
of the large-scale equations at high Reynolds number. We model the small-scale eddies
by stationary periodic solutions of the two-dimensional incompressible Navier–Stokes
equations and the large-scale flow as an initial modulational perturbation of these
solutions.

The evolution of the large-scale, modulational, perturbations determines the non-
linear stability of the small-scale cellular flows. We show in this paper that they are
unstable at large Reynolds numbers and we determine in detail the dependence of
the instability on the anisotropy of the small-scale flows. The modulational stability
of shear and cellular flows has been studied by multiscale homogenization methods
in the past by many authors: Dubrulle & Frisch (1991); Frisch, She & Sulem (1987);
Gama, Vergassola & Frisch (1994); Meshalkin & Sinai (1961); Nepomnyashchy
(1976); Sivashinsky (1985); Sivashinsky & Frenkel (1992); Sivashinsky & Yakhot
(1985); Wirth, Gama & Frisch (1995). The analysis of cellular flows is restricted,
however, to small Reynolds numbers. In this paper we present a stability analysis of
shear and cellular flows at high Reynolds numbers. The applicability of modulational
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stability studies is considerably enhanced, for example in geophysical modelling, by
our large Reynolds number analysis of cellular flows.

Let U (τ, y) satisfy the two-dimensional incompressible Navier–Stokes equations
driven by a spatially periodic force F (y),

∂τU (τ, y) +U (τ, y) · ∂U (τ, y) = −∂P̃ (τ, y) +
1

Re
∆U (τ, y) + F (y), (1.1)

∂ ·U (τ, y) = 0.

Here the Reynolds number,

Re =
UL

ν
,

is based on the length scale L, which is proportional to the spatial period of the force,
taken to be equal to 2π. The stream function Φ (τ, y), such that

U (τ, y) =

( −∂2Φ(τ, y)

∂1Φ(τ, y)

)
satisfies the two-dimensional incompressible Navier–Stokes equations in vorticity
form:

∂τ∆Φ(τ, y) + Jyy(Φ(τ, y),∆Φ(τ, y)) =
1

Re
∆∆Φ(τ, y) + f(y), (1.2)

where for any u and v

Jyy(u, v) = −∂2u∂1v + ∂1u∂2v.

Here f(y) = −∂2F1(y) + ∂1F2(y) is 2π periodic on R2. It is chosen so that it gives rise
to a stream function φ(y) which is a time-independent, mean-zero, periodic solution
of the incompressible Navier–Stokes equations

Jyy(φ(y),∆φ(y)) =
1

Re
∆∆φ(y) + f(y). (1.3)

Let

Φ(τ, y) = φ(y) + Φ̃(τ, y)

be a perturbation of the stationary solution φ(y). If the stream function of the basic
flow is an eddy of size κ−1/2, that is if φ(y) is an eigenfunction of the Laplacian

∆φ = −κφ, (1.4)

then the driving force f(y) is

f(y) = − κ
2

Re
φ(y)

and Φ̃(τ, y) satisfies

∂τ∆Φ̃(τ, y) + Jyy(φ(y), (κ+ ∆)Φ̃(τ, y)) + Jyy(Φ̃(τ, y),∆Φ̃(τ, y)) =
1

Re
∆∆Φ̃(τ, y). (1.5)

What concerns us here is the stability of eddy flows like (1.3) and (1.4) subject to
an initial modulational perturbation, a perturbation on a scale much larger than that
of the eddy. For this purpose, we introduce a small parameter ε and define large-scale
time and space variables

t = ε2τ, x = εy (1.6)
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respectively, and analyse a special class of asymptotic solutions of (1.5), where
Φ̃(τ, y) = Ψε(t, x) is expressed in the large-scale or slow variables as

Ψε(t, x) = Ψ (t, x) + εΨ 1(t, x, x/ε) + ε2Ψ 2(t, x, x/ε) + · · · . (1.7)

The stream function of the full flow is

φ(x/ε) +Ψ (t, x) + εΨ 1(t, x, x/ε) + · · · . (1.8)

The assumption for the dependence on the small-scale or fast spatial variable y = x/ε
is that Ψ 1(t, x, y), Ψ 2(t, x, y), . . . are periodic in the last variable with zero average over
a period cell, which we denote by � = [0, 2πε]× [0, 2πε]:

〈Ψ 1(t, x, ·)〉 = 0, 〈Ψ 2(t, x, ·)〉 = 0, . . . .

For any function u(x, y) periodic in the last variable, the cell-average 〈u〉(x) = 〈u(x, ·)〉
is defined by

〈u〉(x) =
1

Volume(�)

∫
�

u(x, y) dy. (1.9)

The functions Ψ 1(t, x, y), Ψ 2(t, x, y), . . . are determined by the zeroth-order modula-
tional stream function Ψ (t, x) and the small-scale stream function φ(y). This depen-
dence is determined by the multiscale expansion. The initial conditions

Ψε(t, x)|t=0 = Ψ (x) + εΨ 1(x, y) + ε2Ψ 2(x, y) + · · · (1.10)

are supported in x ∈ Ω, and Ψ (x) is bounded and smooth, with Ψ 1(x, y), Ψ 2(x, y), . . .
compatible with the expansion (1.7).

Problems of this kind arise when modelling averaged large-scale flows in the
presence of small-scale flows. An example is large-scale circulation in the oceans.
One of the characteristic features of fluid dynamics in the oceans is the presence of
cell-like mesoscale flows on the scale of order 104–105 m, and velocity fields on larger
scales ≈ 106 m (see Cushman-Roisin 1994). If the large-scale flow is regarded as a
homogeneous fluid with dynamical properties different from the original, then the
effective coefficients of the large-scale modulation equations need to be determined
by separation of scales asymptotics. One of these coefficients, the eddy viscosity, is
a four-tensor that relates the large-scale deviatoric stress to the large-scale rate of
strain.

The concept of eddy viscosity is widely used in the geophysics of the oceans
(see Starr 1968; Kraichnan 1976; Monin & Ozmidov 1985) and in astrophysics (see
Rüdiger 1989) to treat phenomena of depleted, in some cases even ‘negative’ diffusion,
that accompany transport of vector quantities. This is different from the transport of
scalar quantities, which is truly diffusive. The presence of micro-structure in the latter
case only enhances diffusion.

Various examples of flows with large-scale instabilities arising from negative eddy
viscosity have been discussed in the literature. The most well studied among them is
the Kolmogorov flow, a special case of a two-dimensional time-independent periodic
shear flow (see Meshalkin & Sinai 1961; Nepomnyashchy 1976; Sivashinsky 1985;
Dubrulle & Frisch 1991). The one-dimensional nature of this problem allows detailed
analysis of various types of instabilities including nonlinear effects.

Fully two- and three-dimensional flows are analysed mostly numerically, or by
using asymptotic expansions for small Reynolds number, because of their analytical
complexity. Reductions and simplifications can be achieved for problems with a non-
trivial group of symmetries. Parity-invariance, i.e. the presence of a centre of spatial
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symmetry, is recognized (see Kraichnan 1976; Dubrulle & Frisch 1991 and references
therein) as a sufficient condition for eddy-viscous dynamics. Some two-dimensional
flows (analysed in Sivashinsky & Yakhot 1985; Sivashinsky & Frenkel 1992; Gama
et al. 1994) possess this important property. Nevertheless, the mathematical theory of
eddy viscosity is restricted to small Reynolds numbers (see Dubrulle & Frisch 1991)
and there is not much known, even in the linearized case, for when the Reynolds
number is not small.

In § 2 we use multiscale analysis to derive eddy viscosities as effective coefficients
for the transport of a large-scale perturbation of stationary small-scale eddies. In
§ 2.3 we derive from equation (1.5) the large-scale modulation equation for Ψ (t, x) in
vorticity form:

∂t∇2Ψ (t, x) + αnonlinjikl ∇j∇i(∇kΨ (t, x)∇lΨ (t, x)) = νjikl∇j∇i∇k∇l Ψ (t, x). (1.11)

Here we use the summation convention and the notation

∇i =
∂

∂xi
.

The coefficients νjikl are the tensor of eddy viscosity and αnonlinjikl are the effective
coefficients of another tensor which we call the nonlinear α-tensor. Both tensors are
derived as necessary solvability conditions of auxiliary cell problems that guarantee
the validity of the separation of scales for some finite time. Modulation equations like
(1.11) have been derived before (see e.g. Dubrulle & Frisch 1991) and are presented
briefly here for completeness.

In the rest of the paper we consider eddies with κ = 2, a family of cellular flows
with a stream function

φ = sin y1 sin y2 + δ cos y1 cos y2, 0 6 δ 6 1. (1.12)

In § 3 we analyse the tensor of eddy viscosity of cellular flows for large Reynolds
numbers. All the coefficients of the eddy viscosity tensor νjikl but one, called ν ′, are
computed analytically. The ν ′ is computed numerically for Re 6 32, and for closed
cellular flows φ = sin y1 sin y2 we show that ν ′ = O(Re2.5) for large Re. This large
Reynolds number analysis is the main result of this paper.

In § 4 we study the linear and nonlinear stability of the modulational equations.
In § 4.1 we compare the linear dispersion relations of the modulational equations for
closed cellular flows and for shear flows for large Reynolds number. The modulational
perturbations of closed cellular flows (δ = 0 in (1.12)) are much more stable than the
shear cellular flows (δ = 1 in (1.12)) for large Reynolds numbers. More specifically,
exponential solutions Ψ (t, x) = exp(σt) exp(k1x1 + k2x2) are asymptotically unstable
as Re → ∞ only if k1 ≈ ±k2 for closed cellular flows (equation (4.5)). This result
is to be contrasted with a similar stability result for shear flows, where exponential
solutions are asymptotically unstable as Re → ∞ if C1 6 |k1|/|k2| 6 C2 (equation
(4.6)), where C1 = 1/C2 ≈ 0.45 6= 1. Our new results here show that because of
the presence of ν ′ = O(Re2.5) for closed cellular flows, the stability at high Reynolds
numbers is significantly better for flows with closed streamlines. Cell-like mesoscale
ocean flows are at rather high Reynolds number Re = 10–103 and are close to
closed cellular flows (see Cushman-Roisin, McLaughlin & Papanicolaou 1984), so
our analysis may provide an explanation for the persistence of these flows. In § 4.2 we
present results of numerical experiments which show that the nonlinear modulational
equation is stable (unstable) if the linear modulational equation is stable (unstable).
In other words, the presence of the nonlinear α-tensor in (1.11) does not affect the
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conclusions of the linear stability analysis of Sivashinsky & Yakhot (1985) that we
recover for small Reynolds numbers, and this tensor does not affect the conclusions
of our linear stability analysis for large Reynolds numbers.

In § 5 we compare the results of the multiscale analysis with direct numerical
simulations of the linearized problem (1.5). In the Appendix we show with new
variational principles and analysis that for closed cellular flows ν ′ = O(Re2.5) for large
Reynolds number Re.

2. Multiscale analysis for cellular flows
2.1. Separation of scales

Loosely speaking the separation of scales assumption states that the fast and slow
scales can be treated as independent, and if the separation of scales is present at
τ = 0 then it persists at least for some finite time Tε = ε−nT0, where the exponent n
is chosen appropriately. For the case ∆φ = −κφ, n = 2.

In the expansion (1.7) we treat x and y as independent variables and replace the
time and space derivatives by

∂i → ∂i + ε∇i, ∂τ → ε2∂t, (2.1)

where ∇ denotes partial derivatives with respect to the slow spatial variable x. For
the Laplacian in the slow variables we shall use the notation ∇2 =

∑∇2
i .

Equation (1.5) becomes

ε2∂t(∆ + 2ε∂i∇i + ε2∇2)Ψε(t, x, y) =
1

Re
(∆ + 2ε∂i∇i + ε2∇2)2Ψε(t, x, y)

− (Jyy + εJyx)(φ(y), (κ+ ∆ + 2ε∂i∇i + ε2∇2)Ψε(t, x, y))

− (Jyy + ε(Jyx + Jxy) + ε2Jxx)(Ψ
ε(t, x, y), (∆ + 2ε∂i∇i + ε2∇2)Ψε(t, x, y)), (2.2)

where for any u and v

Jxy(u, v) = −∇2u∂1v + ∇1u∂2v,

Jyx(u, v) = −∂2u∇1v + ∂1u∇2v,

Jxx(u, v) = −∇2u∇1v + ∇1u∇2v.

2.2. Cell problems

We substitute expansion (1.7) in equation (2.2) and obtain a family of cell problems,
that is linear, elliptic, periodic boundary value problems in the fast variable y, where
by the assumption of wide separation of scales the slow variables are treated as
constant parameters.

The zeroth-order cell problem

1

Re
∆∆Ψ (t, x)− Jyy(φ, (κ+ ∆)Ψ (t, x))− Jyy(Ψ,∆Ψ (t, x)) = 0 (2.3)

justifies a posteriori that Ψ (t, x) can be chosen independent of the fast variable y.
The first-order cell problem is

1

Re
∆∆Ψ 1(t, x, y)− Jyy(φ, (κ+ ∆)Ψ 1(t, x, y)) = κJyx(φ,Ψ ). (2.4)
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Equation (2.4) has the solution Ψ 1 = (Re/κ)Jyx(φ,Ψ ), since

(κ+ ∆)Jyx(φ,Ψ ) = Jyx((κ+ ∆)φ,Ψ ) = 0.

The second-order cell problem is

1

Re
∆∆Ψ 2(t, x, y)− Jyy(φ, (κ+ ∆)Ψ 2(t, x, y))

= 2Jyy(φ, ∂i∇iΨ 1)− 4
1

Re
∆∂i∇iΨ 1 + Jxy(Ψ (t, x),∆Ψ 1(t, x, y)). (2.5)

It has the solution

Ψ 2(t, x, y) =
4Re

κ2
∂i∇iJyx(φ,Ψ )

−Re
2

κ2
Jxy(Ψ, Jyx(φ,Ψ ))− 2ψ(y)(∇2

2 − ∇2
1)Ψ (t, x) + 2ψ̃(y)∇1∇2Ψ (t, x),

where ψ(y) and ψ̃(y) are solutions of the auxiliary cell problems

1

Re
∆∆ψ(y)− Jyy(φ, (κ+ ∆)ψ(y)) = −Re

κ
Jyy(φ, ∂1∂2φ), (2.6)

1

Re
∆∆ψ̃(y)− Jyy(φ, (κ+ ∆)ψ̃(y)) = −Re

κ
Jyy(φ, (∂

2
2 − ∂2

1)φ). (2.7)

The first- and second-order cell problems determine Ψ 1(t, x, y) and Ψ 2(t, x, y) in the
expansion (1.7). The third-order cell problem determines Ψ 3(t, x, y) in the expansion
(1.7), if it is solvable for arbitrary Ψ (t, x). A necessary, and sufficient in some cases,
solvability condition for this cell problems is that its cell average is zero. The third-
order cell problem is

1

Re
∆∆Ψ 3(t, x, y)− Jyy(φ, (κ+ ∆)Ψ 3(t, x, y))

= ∂t∆Ψ
1(t, x, y)− 1

Re
(4(∂i∇i) + 2∇2∆)Ψ 1(t, x, y)− 1

Re
4∆∂i∇iΨ 2(t, x, y)

+ Jyx(φ(y),∇2Ψ (t, x)) + Jyy(φ(y), 2∂i∇iΨ 1(t, x, y))

+ Jyx(φ(y), (κ+ ∆)Ψ 2(t, x, y)) + Jxy(Ψ (t, x), 2∂i∇iΨ 1(t, x, y))

+ Jxx(Ψ (t, x),∆Ψ 1(t, x, y)) + Jxx(Ψ
1(t, x, y),∇2Ψ 1(t, x, y))

+ Jyy(Ψ
1(t, x, y), 2∂i∇iΨ 1(t, x, y))

+ (Jyx + Jxy)(Ψ
1(t, x, y),∆Ψ 1(t, x, y))

+ Jxy(Ψ (t, x),∆Ψ 2(t, x, y)) + Jyy(Ψ
1(t, x, y),∆Ψ 2(t, x, y))

+ Jyy(Ψ
2(t, x, y),∆Ψ 1(t, x, y)). (2.8)

The solvability condition for this problem is

−〈Jyx(φ,∇2Ψ )〉 − 2〈Jyx(φ, ∂i∇iΨ 1)〉 − 〈Jyx(φ, (κ+ ∆)Ψ 2)〉 = 0. (2.9)

The first term in (2.9) vanishes, because Ψ is independent of the fast variables. The
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third term vanishes, because (κ+ ∆)φ = 0. The second term is zero as well:

〈Jyx(φ, ∂i∇iΨ 1)〉 =
Re

κ
〈Jyx(φ, ∂i∇iJyx(φ,Ψ ))〉

=

〈
∂1

(∂2φ)2

2

〉
(∇3

1Ψ − ∇1∇2
2Ψ ) +

〈
∂2

(∂1φ)2

2

〉
(∇3

2Ψ − ∇2
1∇2Ψ )

+〈∂2(∂
2
2 − ∂2

1)φ〉∇2
1∇2Ψ − 〈∂1(∂

2
2 − ∂2

1)φ〉∇1∇2
2Ψ

= 〈∂2((∂2φ)2 + 1
2
κφ2)〉∇2

1∇2Ψ + 〈∂1((∂1φ)2 + 1
2
κφ2)〉∇2

1∇2Ψ = 0.

Therefore, since the solvability condition (2.9) is satisfied, Ψ 3(t, x, y) is well defined.
We show in the next section that Ψ 3(t, x, y) plays no role in the computation of the
effective coefficients of the large-scale modulation equation. Therefore it suffices to
know that Ψ 3(t, x, y) is well defined.

It should be noted that the solvability conditions for the zeroth-, first- and second-
order cell problems are always satisfied for any mean-zero stream function φ(y). In
general the third-order cell problem has a non-trivial solvability condition. If it is not
satisfied, then the scaling should be chosen to be linear in ε in space and time. Then
the instabilities of the modulation equation are governed by the linear Anisotropic
Kinetic Alpha effect, which is similar to the α-effect in magneto-hydrodynamics (see
Moiseev et al. 1984; Frisch et al. 1987; Sulem et al. 1989 and references therein).

The solvability condition for the third-order cell problem is satisfied if φ(y) is parity
invariant, that is φ(−y) = φ(y). The condition of parity invariance is sufficient, but
certainly not necessary, for quadratic-in-ε time scaling. The stream functions φ, with
∆φ = −κφ, that we consider here are not necessarily parity invariant.

2.3. Effective coefficients of the large-scale equation

Since Ψ 1(x, t, y), Ψ 2(x, t, y), Ψ 3(x, t, y) are well-defined in terms of Ψ (x, t) by the
first-, second- and third-order cell problems, the solvability condition for the fourth-
order cell problem determines Ψ (x, t) as a solution of a differential equation for
which the fast variable y is eliminated by averaging. This equation is the large-scale
modulation equation for Ψ (t, x). In order to compute its (effective) coefficients it is
sufficient to know Ψ 1 and Ψ 2 only. The solvability condition for the fourth-order cell
problem is

∂t∇2Ψ (x, t) + Jxx(Ψ,∇2Ψ ) + 2〈Jxy(Ψ 1, ∂i∇iΨ 1) + Jyx(Ψ
1, ∂i∇iΨ 1)〉

+〈Jyx(φ,∇2Ψ 1)〉+ 2〈Jyx(φ, ∂i∇iΨ 2)〉 − 1

Re
∇2∇2Ψ (t, x) = 0 (2.10)

or, in terms of Ψ (t, x) only

∂t∇2Ψ (x, t) + Jxx(Ψ,∇2Ψ )− 2Re2

κ2
〈Jyx(φ, ∂i∇iJxy(Ψ, Jyx(φ,Ψ )))〉

+
2Re2

κ2
〈Jxy(Jyx(φ,Ψ ), ∂i∇iJyx(φ,Ψ ))〉

+
2Re2

κ2
〈Jyx(Jyx(φ,Ψ ), ∂i∇iJyx(φ,Ψ ))〉
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=
1

Re
∇2∇2Ψ (t, x)− 8Re

κ2
〈Jyx(φ, (∂i∇i)2Jyx(φ,Ψ ))〉

+ ν ′(∇2
2 − ∇2

1)
2Ψ + (ν ′′ + ν ′′′)(∇2

2 − ∇2
1)∇1∇2Ψ + ν ′′′′∇2

1∇2
2Ψ. (2.11)

Here the constants

ν ′ = −4〈∂1∂2φψ〉, ν ′′ = −4〈(∂2
2 − ∂2

1)φψ〉,
ν ′′′ = −4〈∂1∂2φψ̃〉, ν ′′′′ = −4〈(∂2

2 − ∂2
1)φψ̃〉

are determined in terms of ψ and ψ̃, the solutions of the auxiliary cell problems (2.6)
and (2.7). The effective tensors νjikl and αnonlinjikl for equation (1.11) can be read off from
(2.11).

2.4. Summary of the multiscale expansion

Using a multiscale asymptotic expansion we obtain a hierarchy of cell problems. Their
solvability conditions give the appropriate time scaling and the effective coefficients of
the large-scale modulation equations simultaneously, with no additional assumptions.
The only property of the stationary small-scale periodic stream function φ that we
use is ∆φ = −κφ. This property simplifies the zeroth- and the first-order cell problems
and, more importantly, guarantees quadratic scaling in time at least for some fixed
large-scale time T0 that depends on Re and φ. It suffices to consider the expansion
(1.7) up to order ε4 because the equations for the large-scale stream function Ψ (t, x)
come from the solvability condition of the fourth-order cell problem.

The main difficulty in computing the coefficients of the tensor of eddy viscosity
is the behaviour of the solutions of the auxiliary cell problems (2.6) and (2.7). For
small Reynolds number they give a correction to the tensor of eddy viscosity of order
Re2. In this case the eddy viscosities can be calculated approximately up to O(Re2)
because there is no need to solve auxiliary cell problems and the nonlinear α-tensor
can be disregarded. This was carried out in Sivashinsky & Yakhot (1985).

Two questions arise when Re→∞. One is how the solutions of the auxiliary
cell problems may stabilize or destabilize the large-scale modulation equations. The
other is whether the nonlinear correction affects the linear stability analysis of the
modulation equation. We shall now discuss these two questions for the family of
cellular flows φ = sin y1 sin y2 + δ cos y1 cos y2, 0 6 δ 6 1.

3. Analysis of the tensor of eddy viscosity of cellular flows
Let the stream function be given by φ = sin y1 sin y2 + δ cos y1 cos y2 (see figure 1).

Then the large-scale modulation equation (2.11) is

∂∇2Ψ

∂t
+
Re2

8
(∇2

2 − ∇2
1)[δ((∇1Ψ )2 + (∇2Ψ )2) + (1 + δ2)∇1Ψ∇2Ψ ] + Jxx(Ψ,∇2Ψ )

=
1

Re
∇2∇2Ψ − Re

8
((∇1 + δ∇2)

2 + (δ∇1 + ∇2)
2)∇2Ψ

+

(
Re

2
(1 + δ2) + ν ′

)
(∇2

2 − ∇2
1)

2Ψ, (3.1)

where the constants ν ′′, ν ′′′, and ν ′′′′ vanish, since (∂2
2 − ∂2

1)φ = 0, and

ν ′ = −4〈∂1∂2φψ〉. (3.2)
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Figure 1. Level sets of the stream function of cellular flows with small channels, δ = 0.1.

Here ψ is determined by the cell problem

1

Re
∆∆ψ − Jyy

(
φ, (∆ + 2)ψ − Re

2
∂1∂2φ

)
= 0. (3.3)

The coefficients of the tensor of eddy viscosity can be read off from the right-hand
side of equation (3.1). Its analysis boils down to the analysis of the only unknown
coefficient ν ′. We show that ν ′ is always non-negative. We also compute ν ′ numerically
for Re = 1, 2, . . . , 32. In the special case of closed cellular flows φ = sin y1 sin y2, we
show in the Appendix that ν ′ = O(Re2.5), Re→∞.

3.1. Numerical values of ν ′ for intermediate Reynolds numbers

Let ψ be the solution of (3.3). Note that it satisfies

ψ(y1 + π, y2 + π) = ψ(y1, y2),

ψ(−y1,−y2) = ψ(y1, y2),

〈φψ〉 = 0.

 (3.4)

Therefore for any u such that ∆u = −u, we have 〈uψ〉 = 0 and

〈(∂∆ψ)2 − 2(∆ψ)2〉 > 0. (3.5)

Multiplying equation (3.3) by (2 + ∆)ψ(y) − 1
2
Re∂1∂2φ and integrating by parts we

have 〈
1

Re
∆∆ψ(y)(2 + ∆)ψ(y)− Re

2
∂1∂2φ

〉
= 0.

Therefore

ν ′ = −4〈ψ∂1∂2φ〉 =
2

Re
(〈(∂∆ψ)2 − 2(∆ψ)2〉) > 0.

Equality in (3.5) occurs only when ∆ψ = −2ψ, which is a solution of equation (3.3)
only when δ = 1.

Thus, ν ′ is always a non-negative number and vanishes only if δ = 1, that is, if
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Figure 2. Dependence of ν ′/Re on δ for Re = 1, 2, . . . , 32.

φ = cos(y1− y2) is the stream function of a shear flow. This implies that the last term
on the right-hand side of equation (3.1) always plays a stabilizing role.

For intermediate Reynolds numbers the dependence of ν ′ on Re and δ is shown in
figure 2. Each curve represents numerical values of ν ′/Re for fixed Re = 1, 2, . . . , 32.
For a fixed δ it appears that the asymptotic behaviour when Re → ∞ is determined
by the presence or absence of channels. When channels are present (δ > 0), then
ν ′ ≈ CRe. When δ = 0 (closed cellular flows) ν ′ ≈ CReγ , γ > 1. We study numerically
and analytically the exponent γ of the power law in the next section.

3.2. Closed cellular flows

Here we establish asymptotic bounds for ν ′ when Re→∞. The boundary value (cell)
problem (3.3) whose solution determines this constant is similar to the cell problem
that determines the effective diffusivity of a passive scalar for convection–diffusion by
cellular flows. It was analysed in Fannjiang & Papanicolaou (1994) using a saddle-
point variational principle. A generalization of this approach (see Appendix, §A.2)
gives a variational principle for ν ′ and provides rigorous bounds for it in the case of
closed cellular flows. Combining (A 39) and (A 31), the asymptotic bounds for large
Reynolds number for closed cellular flows are

0.02Re2.5 6 ν ′ 6 0.109Re2.5. (3.6)

In figure 3 we show computed values of log ν ′ for closed cellular flows (δ = 0)
with numerical error of order 0.001Re. The numerical calculations indicate that for
55 6 Re 6 180, ν ′ can be sufficiently well approximated by

ν ′ ≈ 0.0668Re2.5, (3.7)

which is well within the theoretical bounds (3.6).
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Figure 3. A plot of log ν ′ as a function of logRe for Re = 1, 2, . . . , 77. The dotted lines are the
asymptotic bounds whose slope is 2.5.

4. Modulational stability analysis for cellular flows
4.1. Linear stability

Suppose that the nonlinear term in the modulation equation (3.1) is small compared
to the linear terms. Then the behaviour of the solution is controlled by the tensor
of eddy viscosity. Because of the different geometric structure of cellular flows with
δ > 0 and δ = 0, linear stability of the large-scale perturbation is also different.

Consider a family of exponential solutions

Ψ (t, x) = exp(σt) exp(k1x1 + k2x2). (4.1)

The growth factor σ satisfies the dispersion relation

σ = σ(k1, k2) = − 1

Re
(k2

1 + k2
2)

+
Re

8
((k1 + δk2)

2 + (δk1 + k2)
2)−

(
Re

2
(1 + δ2) + ν ′

)
(k2

2 − k2
1)2

k2
1 + k2

2

.

Clearly, for any δ there is modulational stability when

Re <
2
√

2

1 + δ
.

As we have already remarked, the last term on the right-hand side of equation (3.1)
always plays a stabilizing role. Using numerical values of ν ′ (see figure 2) we can
show that there is less instability of (4.1) for flows with smaller channels than for
flows with bigger channels. The unstable solutions can be characterized in terms of
the angle arctan (k2/k1). For any δ there is a set of angles arctan k2/k1, for which the
exponential solution (4.1) is unstable. This set is larger for flows with bigger channels;
it is the smallest for closed cellular flows. Therefore, more isotropic flows are more
stable. The shear flows (δ = 1) are maximally unstable if the large-scale perturbation
is perpendicular to the shear flow. This analysis was done for small Reynolds number
in Sivashinsky & Yakhot (1985).

In the case of large Reynolds number, qualitatively the situation is similar. However,
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there is an important additional characteristic. Let us consider separately the two
extreme cases: closed cellular flows (δ = 0) and shear flows (δ = 1).

For closed cellular flows the linearized equation for the large-scale stream function
has the form

∂∇2Ψ

∂t
=

(
1

Re
− Re

8

)
∇2∇2Ψ +

(
Re

2
+ ν ′

)
(∇2

2 − ∇2
1)

2Ψ (4.2)

with ν ′ ∼ C0Re
2.5 as Re → ∞, by (3.6). We will use here the numerically computed

value of C0 from (3.7).
For shear flows, ν ′ = 0 and the linearized equation for the large-scale stream

function has the form

∂∇2Ψ

∂t
=

1

Re
∇2∇2Ψ − Re

4
(∇1 + ∇2)

2∇2Ψ + Re(∇2
2 − ∇2

1)
2Ψ. (4.3)

For closed cellular flows the growth factor σ satisfies the dispersion relation

σ = σ(k1, k2) =

(
− 1

Re
+
Re

8

)
(k2

1 + k2
2)−

(
Re

2
+ ν ′

)
(k2

2 − k2
1)2

k2
1 + k2

2

.

Instability, σ(k1, k2) > 0, occurs when∣∣∣∣1− k2
2/k

2
1

1 + k2
2/k

2
1

∣∣∣∣ < Re− 8/Re

4Re+ 8ν ′
. (4.4)

Therefore, instability occurs when k2 = (1±β(Re))k1 or k2 = (−1±β(Re))k1, where
β is sufficiently small. More precisely, if for large Re

|1− k2
2/k

2
1 | < β2(Re),where asymptotically β(Re) ≈ 1.3679Re−3/4, (4.5)

then exponential solutions with this (k1, k2) are unstable and they are stable otherwise.
One can see that the set of unstable solutions for closed cellular flows depends
significantly on the Reynolds number. In the limit Re → ∞ negative eddy viscosity
exists only for k1 = ±k2, in other words the set of unstable solutions is almost empty.

For periodic shear flows and exponential solutions we have a different result. If for
large Re

1
3
(4−√7) 6

k2

k1

6 1
3
(4 +

√
7), (4.6)

then exponential solutions are unstable and they are stable otherwise. Note that when
the large-scale perturbation is parallel to the shear flow, the last two terms in equation
(4.3) drop out and the solution behaves as if there were no eddies (φ = 0).

We can analyse the behaviour of the eddy viscosity for small and large Reynolds
numbers by considering the linear stability of modulational perturbations of cellular
flows. For small Reynolds numbers (see Sivashinsky & Yakhot 1985), more isotropic
small-scale closed cellular flows (δ = 0) are more stable than shear cellular flows
(δ = 1) to large-scale perturbations. However, for small Reynolds numbers there
are angular regions of wavenumbers where there are instabilities. When Re = ∞
the angular region of instabilities for closed cellular flows is almost empty (equation
(4.5)). For shear cellular flows the angular region of instabilities is quite large (equation
(4.6)).

4.2. Nonlinear effects analysed numerically

We now examine how the nonlinearity affects the linear stability results. We consider
closed cellular flows but a similar analysis can be done for the whole family of
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cellular flows with the same results. We find numerically that the presence of the
nonlinear terms does not affect stability. If the linearized equations are stable then
the full equations are stable and if the linearized equations are unstable then the full
equations develop instabilities as well.

For cellular flows equation (3.1) is

∂∇2Φ

∂t
+
Re2

8
(∇2

2 − ∇2
1)[∇1Φ∇2Φ] + Jxx(Ψ,∇2Ψ )

=

(
1

Re
− Re

8

)
∇2∇2Φ+

(
Re

2
+ ν ′

)
(∇2

2 − ∇2
1)

2Φ. (4.7)

We solve this equation numerically on the square S = [0, 1]×[0, 1] with 1600 = 40×40
grid points and with homogeneous Dirichlet boundary conditions Φ∂S = 0. We use
an implicit Crank–Nicholson scheme for the stabilizing linear term and an explicit
scheme for the nonlinear and destabilizing linear terms.

Linear instability arises when

1

Re
− Re

8
< 0.

Therefore the critical value of the Reynolds number for linear stability of the large-
scale flows is Re = 2

√
2 ≈ 2.8284. When the Reynolds number is smaller than the

critical value then the solutions are dissipative. When the Reynolds number is larger
than the critical value then the dynamics is as follows. Quite rapidly the solution
converges to a function which is almost in the kernel of the operator (∇2

2 −∇2
1)

2, and
then instabilities start to develop.

Consider the linearly stable case. If the Reynolds number is small enough, then the
Laplacian dominates all harmonic modes in the equation, even for very non-smooth
initial data. In figure 4 the initial conditions were chosen to be a 40 × 40 matrix of
random numbers independent and uniformly distributed on [0, 1], Re = 1 and we
show how smooth the solution becomes after 100 time steps.

Consider the linearly unstable case. In figure 5 we show the evolution of the solution
for Re = 50. We take the initial conditions to be a random linear combination of
trigonometric functions. Even if the initial conditions are smooth, after 400 time steps,
with ∆t = 0.01, instabilities appear. Computations also show that, as expected from
the linear stability analysis, the operator ( 1

2
Re + ν ′)(∇2

2 − ∇2
1)

2 in (4.7) quite rapidly
starts to dominate the other linear terms in all directions except for the ones close to
the kernel of (∇2

2−∇2
1)

2. So before the instabilities become visible the solution Ψ (t, x)
converges to the kernel of (∇2

2 − ∇2
1)

2. In figure 5 (b) (∇2
2 − ∇2

1)Φ is of order 10−3.
The appearance of peaks in figure 5 (c) is due to the generation of large-

wavenumber, unstable modes by the finite difference approximation of the differential
operators. Note that small-wavenumber modes that are in the kernel of (∇2

2 − ∇2
1)

2

also persist and grow.

5. Comparison with direct numerical simulations
We also carried out direct numerical simulation of perturbations of cellular flows

on a square with periodic boundary conditions, that is we solved numerically the
linearized equation

∂t∇2Φ̃ε(t, x) =
1

Re
∇2∇2Φ̃ε(t, x)− Jxx

(
φ
(x
ε

)
,

(
2

ε2
+ ∇2

)
Φ̃ε(t, x)

)
, t ∈ [0, 1]. (5.1)
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Figure 4. Linearly stable case (Re = 1) with the initial condition shown in (a) and the solution
after 100 time-steps (∆t = 0.1) shown in (b).

We compared for very small ε (between 0.1 and 0.0001) the solutions with the
predictions of the multiscale analysis. For these ε the largest Reynolds number for
which the solutions are bounded uniformly in ε is seen numerically to be essentially
independent of ε. For different initial conditions the solutions at time t = 1 exhibit the
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phenomena of depleted, enhanced or negative viscosity that confirm the non-isotropic
tensor nature of eddy viscosity with good qualitative and quantitative agreement with
the multiscale analysis.

The details of the numerical method will be reported elsewhere by the first author.
Here we summarize the results. We approximate the solution by taking finitely many
Fourier coefficients. We show that the number of Fourier coefficients can be taken
for a fixed Re independent of ε because, by the discrete maximum principle for the
absolute values of Fourier coefficients, we can control the L2-norm of the truncation
error uniformly in ε. We observe that the algorithm converges for any Reynolds
numbers only for closed cellular flows (δ = 0). Therefore the closed cellular flows are
the most stable in the family of cellular flows.

We show that with initial conditions of the form

Φ̃ε(t, x)|t=0 = cos(mx1 + nx2), (5.2)

for t ∈ [0, 1], all Fourier coefficients corresponding to the ‘small-scale’ modes of
solution of (5.1) are negligible, with an L2-norm less than 10−7. Therefore

Φ̃ε(t, x) ≈ C(t) cos(mx1 + nx2). (5.3)

In figure 6 we show the results of numerical experiments that confirm the anisotropic
tensorial structure of eddy viscosity. The numerical results agree qualitatively and
quantitatively with the expected behaviour of the large-scale perturbations. The
initial conditions are given by (5.2), where the pair (m, n) takes 5 different values:

(i) m = 1/
√

2, n = 1/
√

2,

(ii) m = −1/
√

2, n = 1/
√

2,

(iii) m = 0, n = 1,

(iv) m = 0.5, n =
√

0.75,

(v) m = −0.5, n =
√

0.75.


(5.4)

We plot the ‘large-scale’ coefficient C(t) of (5.3) at t = 1 as a function of δ between
0 and 1. We take m2 + n2 = 1. This conveniently allows us to put the results of the
numerical simulations in one figure. The numbering in figure 6 corresponds to that of
the initial conditions (5.4). The dashed line corresponds to the value of the large-scale
Fourier coefficient with no convection term. Therefore if a curve, or a part of a curve
is below the dashed line, then the viscosity is enhanced by the presence of convection;
if a curve, or a part of a curve is above the dashed line, then the viscosity is depleted
by the presence of convection.

Our numerical results confirm the linear analysis in § 4.1. Curve (iii) corresponds to
the case when the solution is only a function of x2. The linear analysis predicts that
this is the case of the maximally enhanced viscosity for any δ. Curve (i) corresponds
to the case when the solution is perpendicular to the channels. The linear analysis
predicts that this is the case of maximally depleted viscosity. Curve (ii) corresponds to
the case when the solution is parallel to the channels. The linear analysis predicts that
this is the case of the maximally depleted viscosity in the absence of channels (δ = 0);
for the shear flows (δ = 1) it predicts that the eddy viscous corrections should not be
observable. The initial conditions for curves (iv) and (v) are intermediate. We observe
depleted viscosity for small channels and enhanced viscosity for large channels for
m = −0.5, n =

√
0.75 (curve v).
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Figure 5 (a, b). For caption see facing page.

6. Concluding remarks
We have analysed the behaviour of large-scale perturbations of small-scale eddies

and have shown that the geometrical structure of the eddies plays an important
role in the effective equations of large-scale transport. The behaviour of large-scale
perturbations at high Reynolds numbers is more stable when the underlying eddies
have closed streamlines. The model we consider here is the simplest one that shows
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Figure 5. Nonlinear solutions with Re = 50: (a) the initial stream function, (b) after 200 time steps
and (c) after 400 time steps, with ∆t = 0.1.
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Figure 6. The large-scale Fourier coefficient C(t) at t = 1, ε = 0.01 as a function of δ. The dashed
line is this coefficient without the convective term (φ = 0).

this behaviour. The theory can be generalized in several directions. The derivation of
the tensor of eddy viscosities by multiscale analysis can be carried out in the β-plane
approximation for geostrophic flows. As already remarked, among cellular flows those
with no channels (closed cellular flows) play a distinct role – they are the most linearly
stable. This may explain the persistence of these cell-like mesoscale ocean flows (see
Cushman-Roisin et al. 1984).

The strict separation of scales needed for homogenization is physically unrealistic.
However, when flows with a large number of scales are involved one can think
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of using homogenization iteratively from one scale to the next less fine one to get
overall large-scale dynamics. This more realistic analysis remains to be done for
flows. Iterated homogenization has been carried out in other, linear contexts (see
Bensoussan, Lions & Papanicolaou 1978).

Another direction is to consider more general small-scale eddies. We believe that
a similar technique, that is deformation of linear elliptic operators and variational
principles, can be used to extend the results to the random cellular flows analysed in
Fannjiang & Papanicolaou (1997) and Isichenko (1992) for the convection–diffusion
of passive scalars.

Work supported by grants AFOSR F49620-98-1-0211 and NSF-DMS-9971972.

Appendix. Variational bounds for closed cellular flows
A.1. Introduction

The cell problem (3.3) is a fourth order operator with variable coefficients. There is
no closed analytical solution for this equation. However, we are not interested in the
explicit solution but only in ν ′ defined by (3.2) when Re→∞. In order to estimate ν ′
we will introduce saddle-point variational principles for it.

Let us first put equation (3.3) in divergence form because it will be important for
the variational formulation. Note that the term Jyy(φ, (∆ + 2)ψ + Re e) with

e = −∂1∂2φ

2
. (A 1)

is antisymmetric as a function of

χ = ∆ψ + 2ψ . (A 2)

We can write

∆∆ψ = ∆Sχ

with S a symmetric nonlocal linear operator defined by

Sψ = (∆ + 2)−1∆ψ. (A 3)

The operator S is not well-defined if ∆ψ = −2ψ and it is not positive definite where
it is well-defined. However if χ and ψ lie in a subspace of periodic mean-zero H1

functions L ⊂ H1(�), defined by

L = {ψ|(∆ + 2)ψ = 0, (∆ + 1)ψ = 0}⊥, (A 4)

then S is a well-defined positive-definite continuous operator. The solution ψ of the
cell problem (3.3) can be split into two parts

ψ = ψ′ + ψ′′, ψ′ ∈ L, ψ′′ ∈ L⊥. (A 5)

Since the solution of equation (3.3) satisfies (3.4) we have

ψ′′ = C∂1∂2φ (A 6)

with some unknown constant C . Define S and H by

1

Re
S + H =

1

Re

(
S 0
0 S

)
+

(
0 −φ
φ 0

)
=

(
S/Re −φ
φ S/Re

)
. (A 7)
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Then the cell problem (3.3) is equivalent to

∂ ·
(

1

Re
S + H

)
∂(χ+ Re e) = λ∂1∂2φ, χ ∈ L, (A 8)

where

λ = −〈ψ∂1∂2φ〉 1

Re
. (A 9)

The cell problem (A 8) is similar in form to the one for the convection–diffusion
problem of cellular flows considered by Fannjiang & Papanicolaou (1994) (see also
the complex conductivity problem discussed in Cherkaev & Gibiansky 1994). The cell
problem for convection–diffusion of cellular flows is

∂ ·
(

1/Pe −φ(y)
φ(y) 1/Pe

)
∂(χ+ e) = 0, (A 10)

where χ is a mean-zero periodic function of two variables, e = y1, and Pe is the
Péclet number, which is assumed to be large. We use their symmetrization technique
in deriving a saddle-point energy functional and variational principles. The coefficient
λ in (A 8) arises naturally as a Lagrange multiplier for the constraint χ ∈ L. Two
important conditions that allowed Fannjiang & Papanicolaou (1994) to derive the
saddle-point variational principle by symmetrization are: that the differential operator
is in divergence form and that its symmetric part is positive-definite. Note that by
introducing the non-local operator S we wrote equation (3.3) in divergence form,
where the symmetric part of the operator is positive-definite. The price we pay for
this representation is that the solution must belong to the subspace L ⊂ H1(�) (see
equation (A 4)), and that the right-hand side of equation (A 8) is some function from
L⊥.

A.2. Variational principle by symmetrization

For equation (A 8) introduce the adjoint problem

∂ ·
(

1

Re
S − H

)
(∂(χ′ + Re e) = λ′∂1∂2φ, χ′ ∈ L. (A 11)

The λ′ will be identified later as a Lagrange multiplier for ∂1∂2φ. It is not known a
priori that in equation (A 11) there are no other Lagrange multipliers, but this follows
from the symmetries (3.4) of the adjoint problem. With the change of variables
(symmetrization)

χ± =
χ± χ′

2
, (A 12)

equations (A 8) and (A 11) are transformed into coupled equations for the functions
χ±

1

Re
∂ · S∂χ+ + ∂ · H∂χ− = λ+∂1∂2φ, χ+, χ− ∈ L, (A 13)

1

Re
∂ · S∂χ− + ∂ · H∂(χ+ + Re e) = λ−∂1∂2φ, χ+, χ− ∈ L. (A 14)

For any pair of periodic mean-zero functions χ̂+ ∈ L and χ̂− ∈ L, following
Fannjiang & Papanicolaou (1994), consider the energy functional

U(χ̂+, χ̂−, e) =
1

Re
〈∂χ̂+ · S∂χ̂+〉 − 1

Re
〈∂χ̂− · S∂χ̂−〉+ 2〈∂(χ̂+ + Re e)H∂χ̂−〉. (A 15)
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In the problem of convection–diffusion, the extremal value of a similarly defined
energy functional is the effective diffusivity. It was shown in Fannjiang & Papanicolaou
(1994) how to obtain rigorous bounds using saddle-point variational principles. In
our case by direct computation the extremal value of the energy functional is

U(χ+, χ−, e) =
ν ′

2
. (A 16)

This allows us to use variational techniques to obtain bounds for ν ′. We have the
following saddle-point variational principle

Theorem A.1. The value at the unique saddle-point of the quadratic energy functional
U(χ̂+, χ̂−, e) is

ν ′

2
= inf

χ̂+∈L sup
χ̂−∈L

U(χ̂+, χ̂−, e). (A 17)

The classical methods of the calculus of variations (see for example Gelfand &
Fomin 1963) give the Euler–Lagrange equations

1

Re
∂ · S∂χ+ + ∂ · H∂χ− =

∑
i

λ+
i µi, χ+, χ− ∈ L,

1

Re
∂ · S∂χ− + ∂ · H∂χ+ =

∑
i

λ−i µi, χ+, χ− ∈ L.

 (A 18)

The functions µi(y) span the linear space L⊥:

L⊥ = span{µi(y)}. (A 19)

Equations (A 18) are exactly (A 13) and (A 14) because of the symmetries (3.4).
Equation (A 17) follows immediately from (A 16).

The use of symmetrization here and in similar problems leads to a non-degenerate
variational principle. Symmetrization is analogous to rotation by 1

4
π in the plane

applied to hyperboloids z = xy to give the form z = x2− y2. In fact, (A 15) in the old
variables χ̂ and χ̂′ has the form

U(χ̂, χ̂′, e) = 〈∂(χ̂′ + e) · (S + H)∂(χ̂+ e)〉 (A 20)

and the second variation with respect to variables χ̂ and χ̂′ is identically zero. By
analogy to rotation in the plane we have chosen the particular change of variables
(A 12) and obtained a non-degenerate energy functional. There are many other
changes of variables that can be used and their choice is dictated by the applications
of the variational principle. For example, Milton (1990) analysed the group of changes
of variables for elasticity, which is analogous to rotation by an arbitrary angle.

A.3. Bounds from the variational principle

It appears at first that the saddle-point variational formulation for ν ′ is more com-
plicated than the original cell problem (3.3). Nevertheless, by means of the vari-
ational principle we can construct tight estimates for ν ′ for closed cellular flows
φ = sin y1 sin y2 and large Re. The bounds are optimal in the Reynolds number but
the numerical constants for the upper and lower bound are not optimal and can be
improved by more careful estimates.

The method is as follows. The value of the energy integral (A 15) at the saddle-
point equals 1

2
ν ′ by theorem A.1. For an arbitrary fixed trial function χ−lower ∈ L, the
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minimum over all χ̂+ ∈ L of the energy integral U(χ̂+, χ−lower, e) is certainly less than
1
2
ν ′. If φ = sin y1 sin y2 then there is an additional property of solutions of (A 18)

χ± =
∑
k l

ak l cos ky1 cos ly2. (A 21)

Choose χ−lower to be a truncated series of the form (A 21):

χ−lower = Cχ = C
∑
k l6N

ak l cos ky1 cos ly2, (A 22)

where C , N and ak l depend on Re. The minimum of U(χ̂+, χ−lower, e) is achieved when
χ̂+ = χ+

lower satisfies the Euler–Lagrange equation

1

Re
∂ · S∂χ+

lower = −∂ · H∂χ−lower +
∑
i

λiµi (A 23)

where λi are Lagrange multipliers for the constraint χ+
lower ∈ L and µi are defined in

(A 19). Given χ−lower, this equation is easy to solve. If the right-hand side of (A 23) is
expanded in Fourier series

−∂ · H∂χ−lower = C
∑

06k l6N

bk l cos ky1 cos ly2 (k l integers),

equations (A 23) are explicitly solved by

χ+
lower = CRe

∑
06k l6N

bk l

(
1− 2

k2 + l2

)
(k2 + l2)−1 cos ky1 cos ly2.

We have

1

Re
〈∂χ+

lower · S∂χ+
lower〉 = 〈∂χ+

lower · H∂χ−lower〉 ∼ Re C2〈H∂χ · S−1H∂χ〉. (A 24)

We will choose χ so that ∂ · H∂χ 6∈ L and then

S−1H∂χ 6= ∂χ′,

χ′ satisfies

∆Sχ′ = −∂ · H∂χ+
∑
i

λiµi.

Thus, choosing a trial function χ−lower ∈ L as in (A 22) and solving (A 23) for χ+
lower

exactly we have

2CRe〈∂e · H∂χ〉 − C2

(
Re〈H∂χ · S−1H∂χ〉+

1

Re
〈∂χ · S∂χ〉

)
6
ν ′

2
. (A 25)

The choice of N in (A 22) is optimal if

Re〈H∂χ · S−1H∂χ〉 ∼ 1

Re
〈∂χ · S∂χ〉. (A 26)

The choice of C is optimal if

2CRe〈∂e · H∂χ〉 ∼ C2

(
Re〈H∂χ · S−1H∂χ〉+

1

Re
〈∂χ · S∂χ〉

)
. (A 27)

The choice of χ is the most difficult part of the construction. We cannot give a simple
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algorithm for choosing it. It is motivated by the observation that (A 26) holds if χ is
almost in the kernel of operator ∂ · H∂(χ).

For the upper bound the procedure is reversed. We choose χ+
upper ∈ L so that

χ+
lower + Re e = Re

∑
k l6N

ak l cos ky1 cos ly2, (A 28)

solve exactly for χ−upper the Euler–Lagrange equations, similar to (A 23), and as in
(A 25) we have

ν ′

2
6

1

Re
〈∂χ+

lowerS∂χ
+
lower〉+ Re〈H∂(χ+

lower + Re e · S−1H∂(χ+
lower + Re e)〉. (A 29)

Note that for the upper bound in (A 28) we do not have a constant C as in (A 22).
Another difference is that S−1H∂(χ+ + Re e) will be well-defined, because we will
choose χ+ such that ∂ · H∂(χ+ + Re e) ∈ L.

A.4. Lower bound

For the upper and lower bounds we use the relations

〈cos2(my1) cos2(ny2)〉 = 1/4, 〈cos2(my1)〉 = 1/2, (A 30a, b)

‖S‖ = 2, ||S−1|| = 1. (A 30c, d)

Theorem A.2. For closed cellular flows, when Re is large we have the lower bound

153/4

256
√

2
Re2.5 ≈ 0.02Re2.5 6 ν ′. (A 31)

Proof. Suppose a trial function χ−lower is

χ−lower = C

N∑
k=1

(
1− k2

N2

)
cos(2ky1)

2k
, (A 32)

where the constant C is chosen appropriately later. By inspection it is admissible,
that is χ−lower ∈ L, and

2〈∂e · H∂χ−lower〉 =
Re2C

4

(
1− 1

N2

)
〈cos2(2y1)〉 ∼ ReC

8
(A 33)

by (A 30b). The Euler–Lagrange equation (A 23) for χ+
lower is

1

Re
∂ · S∂χ+

lower = C sin y1 cos y2

N∑
k=1

(
1− k2

N2

)
sin(2ky1) +

∑
i

λiµi

=
C

2

(
1− 1

N2

)
cos y1 cos y2 − C cos y2

2

N∑
k=1

2k − 1

N2
cos((2k − 1)y1)

+
∑
i

λiµi

= −C cos y2

2

N−1∑
k=0

2k + 1

N2
cos((2k + 1)y1), (A 34)
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where λi are Lagrange multipliers of the constraints (A 4). Note that the term

C

2

(
1− 1

N2

)
cos y1 cos y2 ∈ L⊥

and it is absorbed into
∑

i λiµi. So

χ+
lower = −ReC

2N2

N−1∑
k=1

[
1− 2

(2k + 1)2 + 1

] 2k + 1

(2k + 1)2 + 1
cos((2k + 1)y1) cos y2. (A 35)

Therefore by (A 30 a, d)

1

Re
〈∂χ+

lower · S∂χ+
lower〉 = 〈∂χ+

lower · H∂χ−lower〉

6
ReC 2

16N4

N−1∑
k=1

(2k + 1)2

(2k + 1)2 + 1
6
ReC2

16N3
(A 36)

we also have with (A 30 a, c)

1

Re
〈∂χ−lower · S∂χ−lower〉 6 2

C2

Re

N∑
k=1

[
1− k2

N2

]2

〈sin2(2ky1)〉

6
C 2

Re

N∑
k=1

[
1− k2

N2

]2

6
8NC2

15Re
. (A 37)

Combining (A 36), (A 37) and (A 33), we have

U(χ+
lower, χ

−
lower, e) >

ReC

8
− ReC 2

16N3
− 8NC 2

15Re
.

For the optimal choice of N and C

N =
√
Re

(
15

128

)1/4

, C = Re1.5 303/4

128

we have

ν ′

2
>

303/4

2048
Re2.5 ≈ 0.01Re2.5. (A 38)

A.5. Upper bound

Theorem A.3. For closed cellular flows, when Re→∞ we have the upper bound

ν ′ 6 2 ∗ 48−3/4Re2.5 ≈ 0.109Re2.5. (A 39)

Proof. Take the trial function χ+
upper , such that

χ+
upper + Re e =

Re

2

∑
m,n>0,m∗n<N

(
1− mn

N

)2

cos(2m+ 1)y1 cos(2n+ 1)y2.

For this trial function we can obtain sufficiently good estimates for χ−. This follows
from
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Lemma 1. If m, n 6= 0, then

〈cos(2my1) cos(2ny2)Jyy(φ, χ
+ + Re e)〉 =

Re

4

m2 − n2

N2
.

If n = 0 then

〈cos(2my1)Jyy(φ, χ
+ + Re e)〉 =

Re

4

m2 − m
N2

.

If m ∗ n ≈ N, and m > n then

|〈cos(2my1) cos(2ny2)Jyy(φ, χ
+ + Re e)〉| 6 Re1

n
.

The equalities follow from direct computations and (A 30a, b). The inequality also
follows from direct computations, but one has to analyse three cases: the number of
non-zero coefficients that contribute to the Fourier coefficient of cos(2my1) cos(2ny2)
can be one, two or three.

The function χ−upper can be given explicitly in terms of Fourier series by solving the
Euler–Lagrange equations and by (A 30a, b, d):

1

Re
〈∂χ−upper · S∂χ−upper〉 6 Re3

16N4

∑
06m,n6N,m∗n<N

(m2 − n2)2

m2 + n2

+
Re3

8

∑
m∗n≈N,m>n

1

(m2 + n2)n2
. (A 40)

Consider the first term in (A 40). Using

(m2 − n2)2

m2 + n2
6

(x2 − y2)2

x2 + y2
+ 8(x+ y + 1), 1 6 m 6 x < m+ 1, 1 6 n 6 y < n+ 1,

we have an integral bound

Re3

16N4

∑
06m,n6N,m∗n<N

(m2 − n2)2

m2 + n2
6

Re3

16N4

∫∫
1<x,y<N+1

x∗y<N+1

(x2 − y2)2

x2 + y2
dxdy

+

∫∫
1<x,y<N+1

x∗y<N+1

8(x+ y + 1) dxdy

 . (A 41)

The second term in (A 41) is asymptotically small compared to the first term

Re3

16N4

∫∫
1<x,y<N+1

x∗y<N+1

8(x+ y + 1) dxdy

6
2Re3

N4

∫∫
1<y<(N+1)/x

1<x<N+1

xdydx 6
Re3

N2
.

For the first term in (A 41) we use the change of variables

ỹ = x2 − y2, x̃ = x ∗ y
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with the Jacobian

|J| =
∣∣∣∣∂x̃∂x ∂ỹ∂y − ∂ỹ

∂x

∂x̃

∂y

∣∣∣∣ = 0.5
1

x2 + y2

and have an estimate

Re3

16N4

∫∫
(x2 − y2)2

x2 + y2
dxdy 6

Re3

32N4

∫∫
−x̃2<ỹ<x̃2

1<x̃<N+1

(x2 − y2)2

(x2 + y2)2
dx̃dỹ

6
Re3

32N4

∫
1<x̃<N

x̃2dx̃ 6
Re3

96N
.

Consider the second term in (A 40). Using mn ≈ N we have

Re3

8

∑
m∗n≈N,m>n

1

(m2 + n2)n2
6
Re3

8

√
N∑

n=1

1

N2 + n4

6
Re3

8N2

√
N∑

n=1

1

1 + (n/
√
N)4
6
Re3

8N2

√
N∑

n=1

1 =
Re3

8N1.5
.

Therefore neglecting asymptotically smaller terms we have

1

Re
〈∂χ−upper · S∂χ−upper〉 = −〈∂(χ+

upper + e) · H∂χ−upper〉 6 Re3

96N
. (A 42)

We also have with (A 30a, c)

1

Re
〈∂χ+

upper · S∂χ+
upper〉 6 2Re

∑
m,n>0,m∗n<N

(n2 + m2)〈cos(2n+ 1)y1 cos(2m+ 1)y2〉

6
Re

2

∑
m,n>0,m∗n<N

(n2 + m2) 6 2
Re

2

N∑
n=1

n2N

n
6
Re

2
N3. (A 43)

Combining (A 42) and (A 43) for any N

U(χ+
upper, χ

−
upper, e) 6

Re3

96N
+
Re

2
N3.

Choosing the optimal

N =

√
Re

481/4

we have
ν ′

2
6 48−3/4Re2.5. (A 44)
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